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Stochastic resonance investigation of object detection in images

Danie] W. Repperger", Alan R. Pinkus', Julie A. Skipperz, Christina D. Schrider?

! Air Force Research Laboratory, AFRL/HEC, Wright-Patterson AFB, Ohio, 45433 USA;
>Wright State Univ. Dept. of Biomedical, Human Factors and Industrial Eng. Dayton, Ohio 45435

ABSTRACT

Object detection in images was conducted using a nonlinear means of improving signal to noise ratio termed “stochastic
resonance” (SR). In a recent United States patent application, it was shown that arbitrarily large signal to noise ratio
gains could be realized when a signal detection problem is cast within the context of a SR filter. Signal-to-noise ratio
measures were investigated. For a binary object recognition task (friendly versus hostile), the method was implemented
by perturbing the recognition algorithm and subsequently thresholding via a computer simulation. To fairly test the
efficacy of the proposed algorithm, a unique database of images has been constructed by modifying two sample library
objects by adjusting their brightness, contrast and relative size via commercial software to gradually compromise their
saliency to identification. The key to the use of the SR method is to produce a small perturbation in the identification
algorithm and then to threshold the results, thus improving the overall system’s ability to discern objects. A background
discussion of the SR method is presented. A standard test is proposed in which object identification algorithms could be
fairly compared against each other with respect to their relative performance.

Keywords: Stochastic Resonance, nonlinear dynamics, object identification, signal-to-noise ratio amplification.

1. INTRODUCTION

Certain properties of nonlinear systems may be beneficial in improving sensitivity to the identification of objects in a
compromised image. The nonlinear effect known as stochastic resonance has been known since 1981, Ref. 1, when it
provided an early explanation for the calculation of the unusual periods of the earth’s ice age. This resulted when the
empirical results mismatched the theoretical predictions by an order of magnitude. To describe the SR effect, it applies
when a weak, subliminal signal is masked in noise or other background interference and the goal is to correctly detect
the state of the concealed signal during the time it is in a high state. The SR effect has been widely studied with
biological signals (Ref. 2 and Ref. 3), in tactile sensation or haptics (Ref. 4 and Ref. 5), and in electronic circuits
(Ref.6). This nonlinear phenomenon has produced some interest in detectability investigations (Ref. 7 and Ref. 8). It has
also shown improvement or amplification of signal-to noise ratios (Ref. 9-13). A resonance in the amount of mutual
information transferred across an information channel can be demonstrated (Ref. 14-22). Such a methodology has
applicability to enhancing images (Ref. 23-24) and for special medical applications (Ref. 25). In Ref. 26, SR techniques
have been generalized to include concurrent optimization with respect to parameter selection. In Ref. 27, multivariable
problems are considered. The goal in this work is to explore and better understand the underlying mechanism of why
SR works and apply such a procedure for improving identification of objects in images. We now describe two means of
interpreting the SR effect as it occurs in Physics. From these two concepts a new class of mathematical means to
synthesizing the SR outcome is discussed. A generalization to SR filters is provided. Examples are first worked on a
signal processing application and then translated into the object recognition problem in images.
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2. STOCHASTIC RESONANCE IN PHYSICS - EXAMPLE 1 - A THRESHOLD VIEWPOINT

The pervasive appearance of SR in biclogical systems can be easily understood by examining a simple threshold model
of a biological process. In Fig. 1, the top diagram displays a subliminal signal S(#) below a threshold of T units. If S(z)
does not pierce through the threshold 7, it is not detected, even though it is in its high state. The signal S() may be
either in the high state (value = 2 < T) or in the low state (value =0). It is clear that there is a 100% chance of incorrectly
identifying the high state of S(?) because it is always subtheshold. However, in all biological systems, there are various
sources and levels of noise. In the middle diagram in Fig. 1, a zero mean noise of low variance is now added to S(¢). It
is seen that on certain occasions, the sum of signals of S(#) + noise will exceed the threshold T and be detected,
especially when S(?) is in the high state. Thus, from a detection point of view, the number of missed negatives (when
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Fig. 1. A threshold representation of the SR effect

S(2) is high) is reduced and the noise has been helpful. The noise will have limiting advantage, however. In the bottom
diagram of Fig 1., the noise has now been increased in variance and, accordingly, the signal S(z) + higher noise power
produces false positives as well as reduces the number of missed negatives when it was in the high state. A summary of
these results is displayed in Fig. 2. Herein the y axis is the probability of correctly detecting S(?) in the high state. At the
origin, for the x-axis (noise power = 0), this probability is near zero. As the zero mean noise variance increases
(moving to the right on the x axis), the SR curve rises because the number of missed negatives of detection rapidly




decreases (with some small number of increases in false positives). The curve in Fig. 2 reaches a maximum at an
optimum amount of noise power. To the right of the optimum noise point, the noise is still increasing in power;
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Fig. 2 — The stochastic resonance curve

however the gain realized by reducing the missed negatives is outweighed by the increasing number of false positives.
Eventually, as the noise becomes very large, the system returns to the state where there is little benefit in adding the
noise. This is called a SR curve because noise is added (stochastic) and a resonance effect is observed, as in Fig. 2. A
second type of SR effect can be observed in a different Physics example involving a bipotential well.

3. STOCHASTIC RESONANCE IN PHYSICS - EXAMPLE 2 — A BIPOTENTIAL WELL

A second way to interpret the SR effect can be seen in the early work in physics with an example called a bipotential
well. Fig. 3 portrays such a rendering. There is a direct analogy between Fig. 3 and Fig. 1. In Fig. 3 the ball is either in
the left potential well (low state) or the right potential well (high state). In this case, the ball does not have enough
potential energy (max |S(2)| = & < T) so it is difficult to make the ball switch states when it should be in the right
potential well (S(?) is in the high state). The addition of noise to the signal S(#) in Fig 3 will accomplish the same goals
as described previously with Figs. 1-2. Thus the bi-potential well is another means of viewing the SR effect, with
analogy to the threshold model in Fig. 1. The bipotential well example, however, allows a mathematical framework to
derive the dynamical equations of interest.

4. MATHEMATICAL FORMULATION OF THE SR CONCEPT

With reference to Fig. 3, the equations of motion of the dynamical system can be derived which leads to a better
understanding, in a mathematical way, of why the SR effect works. In Fig. 3, three physical equilibrium points are
observed at (x = 0, unstable, x = + 1 both stable) and denoted at the bottom of the figure. A quartlc expression for the
potential function V(x) can be derived to fit the shape of Fig. 3 as follows:
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Fig. 3 — A second physics example to explain the SR effect

To derive the equations of motion, the forces acting on the ball can be shown to be related to the spatial change of the
potential energy and external disturbances S(2) with noise &(#) resulting in the following equation:

#2273 4 s+ g @)
ox

Substituting equation (1) into equation (2) gives rise to the following nonlinear differential equation describing the SR
effect:
% =—x(x* —a®)+S@)+ &@t) ©))

The homogenous form of this equation and its equilibrium points are most interesting and occur when:

. x=-x(x*-a*)=0, 0]
which yields the three equilibrium points (x = 0, unstable), (x =+ a, both stable) as shown in Fig. 3. Examining the
physical and mathematical equilibrium points in Fig. 3 shows the concurrence to equation (4). Also from this example,
there now appears to be a means to generalize the results derived so far. First it is useful to cast the dynamics of



equation (3) into the framework as a nonlinear filter processing a scalar input signal S(#} with an additive noise
disturbance &(t).

5. ANONLINEAR FILTER RELATIONSHIP TO DESCRIBE THE SR EFFECT

In Fig. 4, is displayed a filter representation of the input-output parameters of equation (3). The nonlinear function

Signal Input }
SH Nonlinear operator X(0) = g( SEH+S(D)
T
0

+

Noise Input
&)

Fig. 4 — A filter perspective on the SR effect
g(S(1)+ &) represents the right hand side of equation (3). In this context the SR effect results from a nonlinear filter
and the goal is to see what value can be gained from this representation. A wider class of such filters is now discussed.

6. GENERALIZATION OF SR TO OTHER MATHEMATICAL PARADIGMS

It was shown in section 5 that a relationship exists between the physical example and its equilibrium points within a
mathematical framework. This can easily be extended to a wider class of systems (Ref. 28) as follows: Consider a class

of filters, such as in Fig. 4, with the following principle property (e.g. for state variables X, = X, ):

Property 1: In the region of the state space x;, < x; <X, the equilibrium points along the x, axis have the following
characteristics: two stable equilibrium points are interlaced between one unstable equilibrium point.

In Fig. 4, the SR effect will occur (at least locally) in the region x;, < x; <x;, which may not be global, but sufficient to
have applicability. Fig. 5 shows such a rendering. Some simple examples of g(.) are listed (Ref. 28):

Example 1:  g() = X =-(xta;)(x+a,)(x-a;) (x-a4)(x-as), with as>as>a;>a,>a, and for all x < a,. 5)
Example 2:  g(.)= X = (x+a;)(x+ay)(x+a3) (x-24)(x-25) (x-26)(x-27) +(a,)(e™ — ™) + (a,)(e > — ™), (6

a7>asg>as>a5~a4>a3>a,>a;, b0 and the SR effect occurs for all values of x. A number of other such functions can also
be synthesized. In both examples above, the potential energy function V(x) is shaped (cf. Fig. 5) to produce physical
equilibrium points analogous to Fig. 3 in the region of interest. This induces an SR effect, at least locally near the areas
where the interlacing of an unstable equilibrium point between two stable equilibriums is achieved. Thus, by designing
the filter through manipulation of equilibrium points, different filter dynamics can be achieved. We first describe tests
on the efficacy of the method for a simple signal processing example to examine the signal to noise amplification gains
that can be achieved.
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7. TEST CASE-1 A SIGNAL PROCESSING EXAMPLE

The first example considered will evaluate the efficacy of the SR method to amplify signal-to-noise ratio using scalar
signals. The literature abounds on related examples (Ref. 9-13). For this test, S(?) is selected to be the sum of two
unity amplitude sinusoids at frequencies of 1 and 4 hertz, respectively. The noise term &) is chosen to be zero mean
Gaussian with variance (gain,) which will be increased from zero. The input signal to noise ratio in Fig. 4 is determined
on the left from the signals S(?) and &) through Fourier transform estimates of these signals. The combined signal is
then passed through the SR filter in Fig. 4. At the output of that filter, to the right, yields the output signal-to-noise ratio
which is evaluated by performing a FFT (Fast Fourier Transform) on the output x(t) and comparing this signal power at
the two frequencies (1 and 4 Hz) to the adjacent frequency bins. Thus using the calculated input SNR (signal to noise
ratio) and derived output SNR, the SNR ratio gain amplification is then determined via:

Gain Amplification of SNR through the SR filter = (Output SNR) / (Input SNR) ©)

The dynamics of the SR filter for this test case were selected to satisfy equation (3) for the case a = 1. Fig. 6 shows the
time series for S(t) in real time and Fig. 7 is the corresponding FFT for a low level of signal plus noise (S()+£(2)).
Herein it can be seen that the dominant spectral content of S(?) occurs at 1 and 4 Hz is obvious. Fig. 8 shows the
spectral output of the SR filter (x(t)) for a very high level of noise. The //f effect on the signals seems clear so the
second component of S(?) at 4 Hz is less pronounced. The SNR calculation can still be conducted. Fig. 9 demonstrates
the SNR gain as a function of the intensity of the independent noise variable (gain,). The upper plot in Fig. 9 is the SNR
from the output of the SR filter. The lower plot is what the SNR would have been in the absence of the SR filter. The
difference between the end points (SNR gain from the SR filter) of the curves is greater than a 10® amplification and
appears to have no limit, even though this is a contrived example. Figure 10 shows the computational cost to achieve
these calculations. It is seen that the computational complexity is exponential (NP-hard) due to the need to perform the
numerical integration and error convergence using 4 order -Newton-Raphson-Runge-Kutta via the MATLAB™
function “ode45” for stiff differential equations. Figure 11 displays the real time output of the SR filter via (x(t) and
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S(?)) for the worst case noise used in these simulations. This method is now applied to the object recognition problem
involving images.

8. TEST CASE 2- AN IMAGE RECOGNITION PROBLEM

Fig. 12a portrays object 1 and Fig. 12b displays object 2. The goal is to distinguish these objects inside test images
which may be compromised. A comparison of the respective intensity histograms are displayed in Fig. 13. The
distinction of the two objects will be based on a method employing intensity histograms (Ref. 29) using a SR approach.

Good Object Bad Object

The Good Object versus the Bad Object for the Identification Problem of Interest
Fig. 12a — The good object (F-15A aircraft) Fig. 12b — The bad object (anti-aircraft gun)

Bad Object

e i 2 G i 2
Histogram Signatures of the Good Object versus the Bad Object.
Fig. 13 — Histogram signatures of good versus bad object from Figs. 12a-b



It is noted that the sample images in Figs. 12a-b were derived from web-based sources freely available to the public and
do not constitute any specific military information. The development of the SR process proceeds in six steps;

Step 1: A test image is scanned for a possible friendly or hostile object.

Step 2: A sample image from the test image is compared to possible library templates for friendly or hostile objects.
Step 3: A distance norm determines a relative separation between the sample and each library object.

Step 4: A perturbation is then made in the requisite histogram signatures and steps 2-4 are repeated.

Step 5: Votes are developed based on low values of the norm distance from the sample to particular library objects.
Step 6: The threshold operation is synthesized by a majority voting scheme of the constituent voters.

A standard to fairly compare the efficacy of different image identification algorithms is now described.

9. A TEST TO COMPARE ALGORITHMS FOR OBJECT RECOGNITION IN IMAGES

Fig. 14 displays a possible means of objectively comparing and quantifying the efficacy of different algorithms in this
object identification problem. For this paper, three major factors that influence the ability to discern objects in images
include image contrast, brightness (amount of light being transmitted back to the observer from the image), and relative
size of the key objects. The good and bad objects in Fig 12a-b at normal size, contrast, and intensity are calibrated and
appear at the origin in Fig. 14. The three axes show various levels of degradation away from the origin in the directions
of decreasing contrast, changing brightness, and reduction in size. The point in which an algorithm fails (defined e.g.
less than 60% correct detection in a binary detection task) may define the limit of performance of the algorithm. Thus
the distance from the failure point to the origin in Fig 14 is a possible measure to objectively state the efficacy of an
object identification algorithm. Hence algorithms can be compared one against the other for their relative efficacy.

100% N

Brightness

Degradation Algorithm fails at

A this point. The

Relative to length of the double
The origin. arrow line to the
origin measures the
50% efficacy of the

algorithm.

0 Relative Contrast Degradation

/ 50% 100%

Original Object
Images Calibrated
at The Origin

Fig. 14 — Standard to compare object identification algorithms in images




10. RESULTS OF THE SR IMAGE RECOGNITION SYSTEM

Similar to a procedure as discussed in Ref. 30, the approach to using an SR technique to improve the detection of
objects in images will consist of two principal steps:

Step 1: Provide some perturbation in the original data set or analysis method.

Step 2: Threshold the effect in a manner to make decisions on the identity of the object.

It is noted the analogy to the biological system displayed in Fig 1 is very intentional and the goal here is to use a
“bioinspired” methodology to see the benefits that may be gleaned from such a process.

Since it is easier to describe Step 2 first, the thresholding method is discussed next.
10.1 The means of implementing the threshold action

In a companion paper (Ref. 31) the two library objects in Figs. 12a-b were used as a basis for object identification. A
sample image had white Gaussian noise added of increasing intensity to a library image. The goal was to discern the
ground truth (which of the two objects were in the sample image) as the noise power increased. The efficacy of the
algorithm was determined via the ability to correctly distinguish the two images in this Monte Carlo simulation. As the
noise intensity increased, four measures or a metric were selected to correctly discern the two possible objects. To
produce the threshold action, a majority voting scheme would select the bad object if the number of votes was greater
than or equal to the majority. This scheme would choose the good object if the majority vote was less than 2.5 votes.
The thresholding was implemented as shown in Fig 15.

Information
Distance Metric

Vote Bad
Obiject if

3. votes > 2.5

Mutual
Information +

Take Majority Vote,

Is > votes > 2.5?

Correlation

Measure

e Decide Good
Signal-to- Object if

B Noise Ratio 2. votes < 2.5

The Majority Voting Scheme for Improved Object Identification
Fig. 15 — Majority voting scheme as the requisite threshold operator

The five measures/metric in Fig 15. are described in greater detail in Ref. 31. Finally a performance comparison
between the two cases: Case 1 (no SR effect) versus Case 2 (SR method implemented) are presented next.

10.2 Results of two cases of Monte Carlo simulation
The two cases of interest are described from their Monte Carlo simulation. Case 1 is the performance of the system as

portrayed in Fig 16. without the SR effect implemented in the algorithm. Case 2 (Fig. 17) shows the similar system (all
other parameters are the same) but with the SR method in operation. The ground truth is the friendly object so the

10




correct decision would have the sum of all the majority votes < 2.5. The performance of the algorithm in Fig, 16 can be
quantified by looking at the ground truth condition (good object) as the noise intensity increases (no SR effect). The
algorithm eventually fails when the majority vote approaches the chance condition of 2.5 votes. The level of the noise
intensity can be measured off the x-axis in Fig. 16 before the confusion occurs. For Case 2 conditions, Fig 17. portrays a
similar Monte Carlo demonstration when the SR effect is implemented in the simulation. All other parameters in the
simulation are the same. .

Average of five wtes 5 Majorily wters, Good image Gaussian noise of increasing variance
5 v

45
45

4
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3.5

NoESR‘ 5 MaJOrlty Voters

! H H H i H H i L
20 40 60 60 100 120 140 180 160 200 20 40 60 80 100 120 140 160 180 200

0
Fig. 16 - Case 1 — Good image without SR - noise increasing Fig. 17. — Case 2 — Good image with SR — noise increasing
11. CONCLUSIONS

Contrasting Figs. 16 to Fig. 17 it is seen that the SR implementation into the majority voting scheme allows the
algorithm to perform more correctly (closer to the ground truth) with the SR effect in operation for higher values of
noise intensity being added into the image. One method to effectively compare algorithms is to take the point where the
detectors fail to correctly distinguish the ground truth. From Figs 16-17, there is over a 100% improvement in
performance using the SR method as compared to traditional detection methods as measured by the level of noise
intensity before the ground truth becomes confused with the hostile object.
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